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Asymptotic Expansion of the Pressure in the Inverse
Interaction Range
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We consider an Ising system in d�2 dimensions with a ferromagnetic Kac
potential whose scaling parameter is denoted by #. We derive an asymptotic
series for the thermodynamic pressure P;, # in powers of #. The 0th-order term
of the expansion is the mean-field pressure of the Lebowitz and Penrose theory.

KEY WORDS: Ferromagnetic Kac potential; Ising system; pressure; correla-
tion functions.

1. INTRODUCTION AND MAIN RESULTS

The approximation of mean field by long range interactions has a long
history which goes back to the pioneering works of Kac, Uhlenbeck and
Hemmer, (7) and Lebowitz and Penrose, (10) who have proved that the
approximation becomes exact for Kac potentials in a scaling limit # � 0.
#&1 denotes the range of the Kac potential which is scaled so that the inter-
action of a molecule with all the others is bounded uniformly as # � 0 (the
Lebowitz�Penrose limit).

The analsyis before the limit # � 0, when #>0 is kept fixed, is also
very interesting. The interaction in this case has finite range and the system
is a perfectly legitimate model of statistical mechanics. Yet, if # is small, it
is close to mean field and it can be studied using perturbative techniques
w.r.t to the mean field behavior, with the inverse interaction range which
plays the role of the inverse temperature ; in Peierls estimates and
Pirogov�Sinai methods. In this way, for instance, it is possible to study the
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``liquid-vapour branch'' of the phase diagram by low temperature techni-
ques, a strategy which has been succesful both for lattice and continuum
systems.(5, 3, 9)

In the whole approach and particularly when applying the Pirogov�
Sinai scheme, it is important to have an accurate control of the pressure for
small values of #. The #-corrections to the mean field value of the pressure
have been studied by J. Lebowitz, G. Stell, S. Baer, and W. Theumann in
ref. 8, who have derived the first order terms of an asymptotic expansion of
the pressure for values of the parameters where the Mayer and the low
fugacity expansions apply.

In the [simpler] case of an Ising model in d�2 dimensions with
ferromagnetic Kac interactions, we have been able to extend their analysis
going below the critical temperature, with phase transitions present. We
derive in fact in this paper an asymptotic series for the pressure [and for
the correlation functions as well] in powers of #.

1.1. The Model

We study an Ising spin system on Zd. _=[_(x), x # Zd ] is a spin con-
figuration, _4=[_(x), x # 4] its restriction to a bounded region 4/Zd.
The energy of _4 is

H#(_4)=&
1
2

:
x{ y # 4

J#(x, y) _(x) _( y) (1.1)

where #>0 is the scaling parameter of the Kac potential J#(x, y):

J#(x, y) :=a##dJ(#(x& y)), a&1
# = :

x{0

#dJ(#x) (1.2)

(as in ref. 4, we normalize the interaction to have always, i.e. for all #, total
strength equal to 1). We suppose that J(r), r # Rd is a non-negative, smooth
function supported by the unit ball and normalized so that

|
R d

dr J(r)=1 (1.3)

We have restricted to the case without magnetic field because we want to
study phase transitions, our analysis, however, can be easily extended to
non zero magnetic fields. We recall that the thermodynamic pressure is

P#(;)= lim
4 � Z d

1
; |4|

log Z#(;; 4) (1.4)
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where ; is the inverse temperature;

Z#(;; 4)=:
_ 4

e&;H# (_4) (1.5)

the partition function; the limit in (1.4) is (for instance) over an incresing
sequence of cubes 4.

In ref. 10 it is proved that

lim
# � 0

P#(;)=Pmf(;)=& lim
m # [&1, 1] {&

m2

2
&

1
;

I(m)= (1.6)

where I(m) is the entropy at magnetization m

I(m)=&
1&m

2
log

1&m
2

&
1+m

2
log

1+m
2

(1.7)

When ;�1, the minimizer is m;=0, while for ;>1 there are two mini-
mizers, \m; , m; the positive root of the mean field equation

m;=tanh(;m;) (1.8)

Our main result is:

Theorem 1.1. For any ;{1 there are bounded functions pn(;, #)
which have non zero limit as # � 0 and such that

P#(;)tPmf(;)+ :
n�1

#ndpn(;, #) (1.9)

(i.e., the r.h.s. is an asymptotic series for the l.h.s. see (1.10) below).
As we shall see in the next section the coefficients pn(;, #) have an

``explicit'' diagramatic representation as solutions of linear systems of equa-
tions (derived from the BBGKY hierarchy of equations for the correlation
functions). They still depend on # and they could be further expanded so
that we would then get an asymptotic series in powers of #. This is however
not so meaningful physically, as it just amounts to expand in # quantities
like the moments of J#( } ), and we have decided to state our result in the
more compact form (1.9).

As mentioned the series (1.9) is an asymptotic series, namely for any
N�1

lim
# � 0

#&Nd \P#(;)&Pmf(;)& :
N

n=1

#ndpn(;, #)+=0 (1.10)
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Theorem 1.1 neither claims the convergence of the series on the r.h.s. of
(1.9) nor equality with the l.h.s. which we do not expect, at least for ;>1.
In fact, by its definition (1.10), the asymptotic series neglects terms like
e&c#&d

which are certainly present as they are related to the probability of
contours, which contribute to large deviations and surface tension.(1, 2) For
the same reasons the pressure in ``contour models'' has the same asymptotic
series given by (1.9).

The asymptotic series at ;<1 and ;>1 have similar structure and the
coefficients vary continuously with ;, but the continuation is not more
regular than continuous. Our analysis does not apply at ;=1.

Finally a few comments about the proof, which is presented in the
next section. We do not use cluster expansion techniques, which are cer-
tainly available at ; small (uniformly in #) and could be possibly proved
also when there is a phase transition, by working with contour models.
Our proof is much more elementary, as we first relate the pressure to the
two body correlation functions of an interpolating hamiltonian and then
work directly on the BBGKY hierarchy, in the same spirit as in ref. 8.
Below the critical temperature we use a modified hierarchy which involves
truncated correlations functions, the so called v-functions. This gives quite
naturally and directly a formal expansion in powers of #d. To make it a
true asymptotic expansion though, we need to control the remainder. This
is done in two steps, we first prove that a n-body v-function can be
expressed in terms of n-fold convolutions of the same v-functions with the
interaction. We then estimate such smoothened expressions by Peierls
estimates on [moderately] large deviations. All that becomes simpler at
;<1 where we can work directly with correlation functions and use
Gaussian inequalities to reduce the bound on the n-body correlation func-
tions to two body correlation functions, as in ref. 4.

2. PROOFS

As mentioned above, we will prove Theorem 1.1 by relating the pres-
sure to the v-functions of an interpolating Gibbs measure, Subsection 2.1,
and then studying a BBGKY like hierarchy for the v-functions.

2.1. Reduction to Pair Correlation Functions

When ;<1, following ref. 6 we interpolate with the free model at
;=0. Letting t # [0, 1] we have

P#(;)=P0(;)+
1
2

:
y{0

J#(0, y) |
1

0
dt E+#, t;

(_(0) _( y)), P0(;)=
1
;

log 2

(2.1)
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The analogue of (2.1) obviously holds in a finite region 4, (2.1) is then
obtained by letting 4 � Zd. In fact the finite volume correlation functions
converge to their infinite volume limit because the Dobrushin uniqueness
condition holds for any ;<1 and all #, see for instance ref. 4.

The asymptotic expansion of P#(;) is thus determined, via (2.1), by
the asymptotic expansion of the two body correlation functions. The
analogous expression when ;>1 is not as useful, because, in such a case
t; goes through the critical temperature as t # [0, 1]. However, since for #
small enough, any extremal Gibbs measure is close to a Bernoulli process
with non zero magnetization, (3) it is then more convenient to interpolate
with such a free measure. We recall from ref. 3 that when ;>1 and # small
there are two and only two translationally invariant Gibbs states, +\

#, ;

obtained by taking the thermodynamic limit with + and & boundary con-
ditions. For sake of definitiness, in the sequel we restrict to ;>1.

Theorem 2.1. For any ;>1 there are c>0 and c$ positive so
that the following holds. Let 4 be a cube, +4, +

#, ; the Gibbs measure on
[&1, 1]4

+4, +
#, ; (_4)=

e&;H#
+(_ 4 )

Z +
# (;; 4)

, H +
# (_4)=H#(_4)& :

x # 4, y � 4

J#(x, y) _(x) m;

(2.2)

with Z+
# (;; 4) the normalizing factor. Let 2/4 and f any function of _2,

then

|E+ #, ;
4, +( f )&E++

#, ;
( f )|�c$e&c# 2 dist(2, 4c) & f &� (2.3)

The free hamiltonian (of the interpolating free measure) is

H 0
;(_4)=&m; :

x # 4

_(x) (2.4)

and the interpolating hamiltonian for t # [0, 1] is

H +
#, t(_4)=tH +

# (_4)+(1&t) H 0(_4) (2.5)

Let Z#, ;, t(4, +) and +4, +
#, ;, t be the corresponding partition function and

Gibbs measure with + b.c. in the sense of (2.2). We then have

log Z+
# (;; 4)=log Z0(;; 4)&; |

1

0
dt E +

#, ;, t, 4(H +
# &H 0

#) (2.6)
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where

Z0(;; 4)=:
_ 4

e&;H 0
; (_ 4)=cosh(;m;) |4|

Setting

P0(;)=
cosh(;m;)

;
(2.7)

we get, after taking the thermodynamic limit

P#(;)=P0(;)+ :
y{0

J#(0, y) |
1

0
dt E +

#, ;, t(
1
2_(0) _( y)&_(0) m;) (2.8)

where ++
#, ;, t is the + Gibbs measure with hamiltonian (2.5) and E +

#, ;, t its
expectation. They are well defined as the analogue of Theorem 2.1 holds for
the system with hamiltonian (2.5) uniformly in t # [0, 1]. The main point
in the proof of such a statement is that the excess free energy functional
F;, t(m) associated to H#, t in the Lebowitz�Penrose limit, is

F;, t(m)=| dr[ f;(m(r))& f (m;)]+
;t
4 || dr dr$ J( |r&r$| )[m(r)&m(r$)]2

where, see (1.6) and (1.7),

f;(m)=&
m2

2
&

I(m)
;

is independent of the interpolating parameter [same is true for the mean
field equation (1.8)]. The whole analysis in refs. 5 and 3 then applies
uniformly in t # [0, 1], details are omitted.

By (1.6) and (2.7)

P0(;)=Pmf(;)+
m2

;

2
(2.9)

and (2.8) becomes

P#(;)=Pmf(;)+ 1
2 :

y{0

J#(0, y) |
1

0
dt E +

#, ;, t([_(0)&m;][_( y)&m;])

(2.10)
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We have thus completed the first step of the proof, reducing the
asymptotic expansion of the pressure to the asymptotic expansion for the
two-body v-correlations.

2.2. A priori Bounds

As already mentioned we consider explicity only the case ;>1, the
case ;<1 can be recovered by setting m;=0, but its analysis could be
done alternatively with simpler methods. We define the v-functions by the
formula

v+
#, ;, t(x1 ,..., xn)=E +

#, ;, t \ `
n

i=1

[_(x i )&m;]+ (2.11)

where xi are distinct sites in Zd.

Proposition 2.2. There are %>0 and cn , n�1, so that for all #,
t # [0, 1], n�1 and n distinct sites x1 } } } xn

|v+
#, ;, t(x1 ,..., xn)|�cn#%n (2.12)

Proof. We will first prove that there are %, c and a positive so that

++
#, ;, t \}:x J#(0, x)[_(x)&m;] }�#%+�c exp[&a#2%&d�2] (2.13)

To prove (2.13) we call D# a partition of Zd into cubes C# of side #&1�2,
C#, x denoting the cube that contains x. We then set

I#(x, y)=
1

|C# |2 :
x$ # C#, x

:
y$ # C#, y

J#(x$, y$) (2.14)

and have

|I#(x, y)&J#(x, y)|�c1 |x& y|�#&1 #1�2 (2.15)

Then for %<1�2 and # small enough,

{}:x J#(0, x)[_(x)&m;] }�#%=/ .
| y|�#&1 {}:x I#( y, x)[_(x)&m;] }�#%

2 =
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We omit the proof anologous to the Peierls estimates in ref. 5 that

++
#, ;, t \} 1

|C# |
:

y # C#

[_( y)&m;] }�#%

2 +�c exp[&a#2%&d�2] (2.16)

for suitable constants c and a>0. (2.13) follows from (2.16).
To explain our strategy for concluding the proof of the proposition, let

us first consider the easy case where |xi&xj |>#&1 for all i{ j. By using
repeatedly the DLR equations we then get

v+
#, ;, t(x1 ,..., xn)=E +

#, ;, t \ `
n

i=1

[tanh[;J#(xi , } ) b _]&m;]+ (2.17)

where

J#(x, } ) b _= :
y{x

J#(x, y) _( y) (2.18)

Recalling the mean field equation (1.8) we then derive (2.12) from (2.13).
In the general case, i.e., when xi and x j are possibly close, we have an

expression more complex than (2.17). We need some extra notation.

v Let x # Zd and f (_) a bounded function. Let $x, \ f (_) be equal to
the value of f on the configuration obtained from _ by setting _(x)=\1.
We also define �x f =$x, + f &$x, & f.

v We define A\
x as

A+
x f (_)=[tanh[;J#(x, } ) b _]&m;] $x, + f (_) (2.19)

A&
x f (_)= 1

2[1+m;][1&tanh[;J#(x, } ) b _]] �x f (_) (2.20)

We will next derive

v+
#, ;, t(x1 ,..., xn)= :

=1=\1

} } } :
=n&1=\1

E +
#, ;, t

_\ `
n&1

i=1

A
=i
xi

[tanh[;J#(xn , } ) b _]&m;]+ (2.21)

that will be obtained proving by induction for j=1,..., n&1 that

v+
#, ;, t(x1 ,..., xn)= :

=j=\1

} } } :
=n&1=\1

E +
#, ;, t

_\ `
j&1

i=1

(_(xi )&m;) `
n&1

i= j

A
=i
xi

[tanh[;J#(xn , } ) b _]&m;]+
(2.22)
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(2.22) is evidently true when j=n&1. We suppose by induction that (2.22)
holds for j=l>1 and prove it next for j=l&1. We shorthand

f (_)= :
=l=\1

} } } :
=n&1=\1

`
n&1

i=l

A
=i
xi

[tanh[;J#(xn , } ) b _]&m;]

_ `
l&2

i=1

(_(x i )&m;)

and x#xl&1 . Using the identity

f (_)=$x, + f (_)&
1&_(x)

2
�x f (_)

and the induction assumption, we have

v+
#, ;, t(x1 ,..., xn)=E +

#, ;, t \[_(x)&m;] {$x, + f (_)&
1&_(x)

2
�x f (_)=+

Calling :=; �y J#(x, y) _( y) and using the DLR equations

v+
#, ;, t(x1 ,..., xn)=E +

#, ;, t \[tanh(:)&m;] $x, + f (_)

+
1+m;

2
[1&tanh(:)] �x f (_)+

which proves (2.22) with j=l&1 (2.21) is proved.
A sort of chain rule holds for a derivative �xi

acting on a product of
functions. The easiest way to see this is to write

�x f (_)=|
1

&1
d_(x)

d
d_(x)

f (_) (2.23)

Then v+
#, ;, t(x1 ,..., xn) can be written as integrals (coming from (2.23)) of

a sum of finitely many terms (their number depending on n). Each term
is the expectation of a product of n functions, each one being a high
order derivative (with respect to variables _(xi )) either of the function
(tanh( } )&m;) or of the function

1
2 (1+m;)(1&tanh[;J#(x, } ) b _])
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Each derivative brings in a factor J#(xi , x j ) which is bounded propor-
tionally to #d. In the product there are functions (tanh( } )&m;) which are
bounded proportionally to #% with probability exponentially close to 1. The
number of derivatives and factors (tanh( } )&m;) is not less than n.
Proposition 2.2 is proved. K

2.3. BBGKY Hierarchy

We will next derive a BBGKY hyerarchy of equations which is verified
by the v-functions and then use it to prove bounds on the v-functions. Let
Zdn

{ be the set of elements in Zdn with all distinct sites. Let X=(x1 ,..., xn&1)
# Zd(n&1), x � X and

k#(x, y | X )=
;t

cosh2(;m;)
J#(x, y) 1y � X (2.24)

We are going to prove that for any n, X, x as above and N>1 there are
coefficients a#(X, x, Y; N ) and R#(X, x; N ) so that

v+
#, ;, t(x1 ,..., xn&1 , x)=:

y

k#(x, y | X ) v+
#, ;, t(x1 ,..., xn&1 , y)

+ :
n+N

k=0

:
Y # Zkd

{

a#(X, x, Y; N ) v+
#, ;, t(Y )+R#(X, x; N )

(2.25)

We will also prove that there are absolute constants cn, N, k and cn, N so that

:
Y # Z kd

{

|a#(X, x, Y; N )|�cn, N, k #d[(n+1&k)�2]+d1n=k , k�n (2.26)

where [ } ] is the integer part and 1n=k is 1 when n=k and 0 otherwise;

:
Y # Z kd

{

|a#(X, x, Y; N )|�cn, N, k , k>n (2.27)

|R#(X, x; N )|�cn, N#%N (2.28)

(2.25) is therefore an identity between v functions, with a#(X, x, Y; N )
which are known coefficients and R#(X, x; N ) an ``unknown'' remainder
term which is however ``negligibly small.''
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We will only outline below the proof of the above statements giving
the algorithm for computing the coefficients a#(X, x, Y; N ) without doing
it explicitly (but in the last subsection we will determine their leading
contribution as # � 0). By using the DLR equations we have

v#, ;, t(x1 ,..., xn&1 , x)=E#, ;, t \[tanh(;J#(x, } ) b _)&m;] `
n&1

i=1

[_(xi )&m;]+
(2.29)

having dropped the superscript +. By (1.8) and recalling that J# is
normalized, see (1.2),

tanh(;J#(x, } ) b _)&m;=tanh(;m;+;J#(x, } ) b [_&m;])&tanh(;m;)

(2.30)

We Taylor-expand w.r.t. the variable ;J#(x, } ) b [_&m;] up to order N.
The remainder term is R#(X, x; N ). (2.28) then follows from Proposition 2.2.

The first order term of the expansion is

:
y

k#(x, y | X ) v#, ;, t(x1 ,..., xn&1 , y)

+ :
n&1

i=1

J#(x, x i ) E#, ;, t \[_(xi )&m;]2 `
n&1

j{xi=1

[_(xj )&m;]+ (2.31)

the first addendum coincides with the first term on the r.h.s. of (2.25). After
writing

[_(x)&m;]2#
1+_(x)

2
[1&m;]2+

1&_(x)
2

[&1&m;]2 (2.32)

we add and subtract m; to _(x) and the expression thus obtained is inserted
in (2.31) giving terms that are v-functions multiplied by coefficients which
satisfy the bound (2.26). By an analogous procedure we can prove that all
the other terms of the Taylor expansion satisfy the bounds (2.26) (2.27).
We omit the details and give (2.25)�(2.28) for proved.

The kernel k#(x, y | X ), see (2.24), has norm

:
y

k#(x, y | X )�
;t

cosh2(;m;)
<1 (2.33)
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by (1.8). The resolvent [1&k#( } , } | X )]&1 is then well defined (as a
Neumann series) and we denote by g#(x, y | X ) its kernel. We then have

v#, ;, t(x1 ,..., xn&1 , x)

=:
z

g#(x, z | X ) { :
n+N

k=0

:
Y # Z k

{

a#(X, z, Y; N ) v#, ;, t(Y )+R#(X, z; N )=
(2.34)

Let

&v#, ;, t&n= sup
X # Z n

{

|v#, ;, t(X )| (2.35)

calling n the order of the ``seminorm'' & }&n . We have:

Theorem 2.3. There are constants cn , n�1, so that for all #,
t # [0, 1] and n�1

&v#, ;, t&n�cn#d[(n+1)�2] (2.36)

Proof. To prove (2.36) we observe that using (2.26), (2.27) and
(2.28), (2.34) gives

&v#, ;, t&n� :
n

k=0

Cn, k, N #d[(n+1&k)�2]+d1n=k &v#, ;, t &k

+ :
N

k=n+1

Cn, k, N &v#, ;, t&k+Cn, N#%N (2.37)

with Cn, k, N and Cn, N suitable constants.
We iterate N times (2.37) getting

&v#, ;, t &n�C$n, 0 #d[(n+1)�2]+ :
n+N&1

k=1

C$n, k, N #d[(n+N&k)�2] &v#, ;, t&k

+ :
N 2

k=n+N

C$n, k, N &v#, ;, t&k+C$n, N #%N (2.38)

with C$n, k, N and C$n, N suitable constants.
To prove (2.38) we observe that by (2.37) the coefficients multiplying

a seminorm of order k<n have a factor #d(n&k)�2 if n&k is even and
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#d(n+1&k)�2 otherwise. The gaining factor is #d if n=k while there is no
gaining factor if k>n. Then after some combinatorics we derive (2.38),
details are omitted.

We choose N so that

N%>dn (2.39)

Then, using Proposition 2.2, if 1�k�n+N&1,

#d[(n+N&k)�2] &v#, ;, t &k�#d[(n+N&k)�2]ck #%k�ck #N%�2

while for k�n+N we just observe that

&v#, ;, t&k�ck#%N

Then, by (2.38), Theorem 2.3 is proved. K

2.4. Asymptotic Expansion

We are now able to compute v#, ;, t(X ), X # Zdn
{ , up to order #dM, for

any M>0, by ``simply'' doing the following. We iterate N times (2.34) with
%N>dM. We get a huge number of terms. A first group is made of terms
containing R# as a factor; a second group has terms with still a v function.
What left is what we call b#, ;, t(X, N ). As in the proof of Theorem 2.3, all
terms except b#, ;, t(X, N ) are bounded proportionally to #%N<#dM, thus
b#, ;, t(X, N ) and v#, ;, t(X ) are the same up to order #dM. We then conclude
that for any n�1 and any X # Zdn

{ there are coefficients c#, ;, t(l, X ) so that

v#, ;, t(X )= :
M

l=[(n+1)�2]

c#, ;, t(l, X )+o(#dM ), |c#, ;, t(l, X )|�cl, n#dl (2.40)

where o(#dM ) goes to 0 faster than #dM and the terms cl, n are positive coef-
ficients. The terms c#, ;, t(l, X ) can be computed explicitly in terms of the
kernels g#( } , } | X ), here we give the leading ones. For X=(x1 , x2) we have

c#, ;, t(1, X )= g#(x1 , x2 | X )[1&m2
;] (2.41)

Recall that g# is the kernel of (1&k#)
&1 and by (2.24):

g#(x1 , x2 | X )=
;t

cosh2(;m;)
J#(x1 , x2)+ } } } (2.42)

which is therefore bounded proportionally to #d.
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For X=(x1 ,..., xn), n even,

c#, ;, t(n�2, X )=

[
:

all partition of X
[Xj ]j=1,..., n�2; Xj # Z 2d ]

_`
n�2

j=1

c#, ;, t(1, Xj )& (2.43)

which is the expression for the n th moment of a centered Gaussian field
indexed by x # Zd with covariance c# , ;, t (1, X ).

We conclude obseving that the coefficients pn(;, #) of the expansion of
the pressure in powers of #d, see (1.10), are obtained by using the expan-
sion (2.40) in (2.10):

pn(;, #)= 1
2 :

y{0

J#(0, y) |
1

0
dt[c#, ;, t(n, (0, y)) #&dn] (2.44)
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